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Abstract. An approximate method for estimating entropy with computer simulation, 
suggested recently, is applied here, together with a new method, to the Metropolis Monte 
Carlo (MC) simulation of the simple cubic king lattice. Beyond the critical temperature 
T,, the accuracy of our best results for the entropy and the free energy is estimated to 
be better than 0.07% and 0.05% and at T, itself, it is approximately 1% and 0.2% 
respectively. These results are in very good agreement with results obtained with the 
‘stochastic models’ method, which is a computer simulation technique, alternative to the 
conventional MC, and with series expansion estimates. Our results for the entropy are 
significantly more accurate than results obtained with the commonly used reversible 
thermodynamic integration. 

1. Introduction 

An approximate method for estimating entropy with computer simulation techniques 
has been suggested recently (Meirovitch 1977a) and applied very successfully to the 
Metropolis Monte Carlo (MC) simulation (Metropolis et al 1953, Fosdick 1963) of 
the square lattice gas model (Meirovitch and Alexandrowicz 1977b) and the hard- 
square lattice gas (Meirovitch 1983). The method is based on an approximate formula 
for the entropy in which the entropy is expressed as a function of the frequency of 
occurrence of certain local, states. These frequencies are calculated from a single MC 
run, which makes the method substantially more efficient than the commonly used 
reversible thermodynamic integration (Hansen and Verlet 1969). Also, in contrast 
to the ‘multistage sampling’ (Valleau and Card 1972) and Salsburg’s method (Salsburg 
er a1 1959), the accuracy of our method improves with increasing system size. The 
method is also more accurate than other methods for estimating entropy (Alexan- 
drowicz (1976), and methods reviewed in Binder (1979)). 

The formula for the entropy and the definition of the local states are based on the 
concepts of the stochastic models (SM) method, which is a computer simulation 
technique independent of the commonly used MC procedure (Alexandrowicz 197 1, 
1972, Meirovitch and Alexandrowicz 1977a). Understanding these concepts is there- 
fore essential for applying our method to various systems. So far it has been applied 
to two-dimensional models only. In the present work we extend it to the simple cubic 
(sc) Ising lattice. We test several sets of local states, which represent different 
approximations for the entropy, in the vicinity of the critical temperature T, and at 
T, itself. The results are compared with MC results for the entropy obtained by 
reversible thermodynamic integration (Binder 1972), with results obtained by the SM 
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method (Meirovitch and Alexandrowicz 1977a) and with seri 3s expansion estimates. 
We also develop and test a new method for estimation of the entropy and discuss its 
advantages. This method is based on a new formulation of the SM method recently 
suggested (Meirovitch 1982). 

2. Theory 

2.1. The simple cubic k ing  lattice 

Consider a sc lattice with N = L x L x L sites where at each site k a spin variable crk 
is defined, gk = *l .  Neighbour spins m and 1 interact with energy -Jcrmcrl (J  > 0) and 
the microscopic energy Ei of lattice configuration i is therefore 

Ei = -J U p ,  
kl 

where k, I denote nearest-neighbour spins. The Boltzmann probability Pa of configur- 
ation i is given by 

Py = Z-’ exp(-Ei/kBT) (2) 

where Z is the partition function, kg the Boltzmann constant and T the absolute 
temperature. The average energy can be estimated by sampling n configurations with 
PB and calculating E, 

n 

E, = n-l 1 
1=1 

(3) 

where i ( t )  is configuration i obtained at time t of the process. 

2.2. Approximate formulae for the entropy 

Two approximate formulae for the entropy, based on the so-called local states, have 
been derived for the square Ising lattice (Meirovitch 1977a). These formulae are 
generally valid, but a suitable set of local states should be defined for each system. 
Let us now briefly describe the SM method procedure, as applied to the sc lattice, 
and this will enable us to define the particular sets of local states for this model and 
obtain the two formulae. With this method (Alexandrowicz 197 1, Meirovitch and 
Alexandrowicz 1977a) a configuration is obtained by filling an initially empty lattice 
with spins with the help of a model stochastic process. At the k th step of the process, 
sites k ‘=  1 . . . k - 1 have already been filled with spins and the spin orientation at 
site k should be determined. It can be shown (Meirovitch 1982) that the exact 
transition probability (TP) for g k  depends on all the spins of the surface between the 
filled and the empty regions of the lattice. This surface (illustrated in figure 1) consists 
of the as yet ‘uncovered’ spins of layer 1-1 and the spins of layer 1. Approximate 
TP can be defined by taking into account a limited number of surface spins, neighbours 
to site k. For example, as a first approximation one would consider only the three 
nearest-neighbour spins to site k on sites k - 1, k - L and k - L2 (see figure 1). These 
three spins define m = 23 = 8 distinct local states which are labelled I. One can also 
define a wider set of local states I,+ and I , -  by also taking into account the two 
possible spins at site k, crk = 1 and Uk = -1 respectively. Two TP p,( + [ I )  and p x (  - II), 
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Figure 1. A diagram illustrating the surface between the filled and empty regions of the 
simple cubic Ising lattice at step k of the SM method construction. The small cubes denote 
lattice sites which have already been filled with spins in the previous steps of the process. 
The site to be filled, k ,  is denoted by a cube drawn with broken lines. The shaded cubes 
denote lattice sites with a distance of three lattice bonds (measured on empty lattice sites) 
from site k .  

for fixing +1 or -1 respectively, correspond to each local state I, and they also depend 
on a set of parameters x. The spin at site k is determined by a lottery according to 
p,( + \ I ) ,  and hence the probability Pi(x) of lattice configuration i constructed with 
this process is given by the product of the N sequential TP with which the N spins 
have been chosen. The TP define therefore a probability distribution on phase space 
and hence, a free energy functional F ( x )  can also be defined. 

With the SM method, the 'best' probability distribution and free energy F(x*)  are 
obtained by minimisingF(x) with respect tox where x *  is the optimal set of parameters. 
According to the minimum free energy principle, F(x*)  is never smaller than the 
true free energy F, defined with the Boltzmann probability (equation (2)). In this 
context, it should also be pointed out that F has zero fluctuation, i.e. 

(A'F) = 0, (4) 
whereas (A*F(x))  is generally larger than zero (where the same notation ( ) is used 
here for the statistical averages with P? and P i ( x ) ) .  However, a strong positive 
correlation has been found between F ( x )  and ( A 2 F ( x ) )  (Meirovitch and Alexandrowicz 
1976) which will be used later as an optimisation criterion. 

The fact that Pi(x*)  is provided by the SM procedure enables one to derive two 
general formulae for the entropy (Alexandrowicz 1971, Meirovitch 1977a), 

(7) V I  = V I , ,  + VI,-. 

In these equations m denotes the number of local states I and vI, vI,+ and uI,- stand 
for the frequencies of occurrence of local states I, I,+ and I,- respectively. In 
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equation (3, p (  + 11) and p( - 11) denote the optimal set of TP. In equation (6), however, 
these TP are expressed in terms of the Y ’ S  which are a typical property of the lattice 
at equilibrium. In this sense, equation (6), although derived on the basis of the SM 
method considerations, constitutes a general expression for the entropy. We shall 
simulate the sc Ising lattice with the MC procedure, estimating VI,+ (and vI,-) by PI,+ 
from a sample of n configurations, 

where NI,+[i(t)] is the number of times the local state I,+ appears in configuration i 
sampled at time t .  The entropy is then calculated by substituting the V’s in equation 
(6). Alternatively, we will show that a set of approximate TP can be calculated 
independently of the MC run and thus the entropy can also be estimated with 
equation ( 5 ) .  

2.3. Definition of local states 

In this section, we define four sets of local states, which define four approximations 
for the entropy via equations (6) and (7). The first set (set I, which consists of the 
three nearest-neighbour spins to site k), has already been described in 0 2.2. In 
addition to these three spins, set I1 also takes into account the three next-nearest- 
neighbour spins to site k, on sites k - L + 1, k - L2 + 1 and k - L2 + L (see figure 1); 
it consists therefore of m = 26 = 64 local states of type I. Set I11 also takes into account 
the five spins with a distance of three lattice bonds from site k (measured on empty 
lattice sites). These sites are represented by shaded cubes in figure 1. For this set 
m = 2*’ = 2048. Set IV also considers, in an approximate way, the ten spins, with a 
distance of four lattice bonds, from site k. Instead of taking into account all their 
1024 possible local states, we define only three local states according to whether their 
magnetisation g satisfies -10 s g < -2, -2 s g s 2 or g > 2. Therefore, for this set 
m = 2048 x 3 = 6144. 

2.4. Definition of TP for equation (5) 

A new method has recently been developed for calculating approximate TP for the 
SM procedure of the square Ising lattice which depends on a mean field parameter A 
only (Meirovitch 1982). Similar TP can also be defined for the sc lattice. Assume, 
again, that we are in the kth step of the SM procedure, and let us consider the eleven 
spins that define set 111. ‘Above’ these spins we define a ‘box’ of empty lattice sites 
in the following way: ‘above’ site k we include in the box the empty sites k +L2, 
k + 2L2 and k + 3L2, which reside on layers I + 1, I + 2 and 1 + 3, respectively. In the 
same way, three empty sites for the box are defined above each of the other four 
spins of layer I (k - 1, k -L, k -L + 1 and k -L +2).  However, above the six spins 
of layer 1 - 1 one should also include in the box empty sites which belong to layer I, 
and therefore 5 x 3 + 6 X 4 = 39 empty lattice sites define this box. The TP for having 
a spin (+ at site k is proportional to the conditional partition function Z ( m ,  I, A) (see 
Meirovitch 1982, § 3.2), 
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where j runs over all the possible spin configurations of the empty box which can be 
obtained in future steps of the process. These as yet undetermined spins should be 
distinguished from the k - 1 already fixed ones, and therefore we call them the future 
spins. E ( j )  is the microscopic energy of future box configuration j .  Jj denotes the 
configuration of the eleven future spins of the bottom of the box. Jj interacts with I 
and E(I ,  4 )  is the interaction energy. E((T, (T‘) denotes the interaction energy of (T 

with its six nearest-neighbour U ’  and E(j ,  A )  stands for the interaction energy of the 
future spins located on the surface of the box with the mean field parameter A .  (A 
future spin (T of the surface contributes a factor -JAa to E ( j , A )  where J is the 
interaction constant.) The normalised approximate TP is 

(10) 

This set of TP (which is independent of the MC simulation) enables one to estimate 
the entropy using equation ( 5 ) .  However, one should also optimise the parameter A ,  
and this cannot be achieved with the minimum free energy principle criterion since 
the energy (in contrast to the SM method) is independent of A .  We rely therefore on 
the strong positive correlation found between F(A)  and (A2F(A)) (Meirovitch and 
Alexandrowicz 1976) and seek the optimal parameter A* which minimises (A2F(A)). 
In practice, five sets of TP with different values of A are calculated prior to the MC 

run. ((A2F(A))) is estimated from the simulation and thus A* can be determined. 
To save computer time, a crude value of A* is initially determined from a short MC 

run. 
Estimation of the entropy might be more practical with equation ( 5 )  than with 

equation (6) for systems with many degrees of freedom, which require a huge computer 
memory for storing the vector of the v’s.  In that case, computing the TP (equation 
(10)) in each step of the MC run requires less computer memory; however, much 
more computer time is needed. 

p ( a ,  1, A )  =Z((T, I, A)I [Z(v ,  I ,  A )  +Z(-a, 1, All. 

3. Results and discussion 

Using the ‘symmetric’ Metropolis procedure with periodic boundary conditions (Yang 
1963), we have carried out MC runs of n = lo4 lotteries per spin (Ips) at several 
reciprocal temperatures K = J / k B T ,  above and below the critical temperature K,; 
lattice sizes of L = 30 and L = 25 have been used close to and far from K,, respectively. 
At the best estimate for the critical temperature K ,  = 0.22169 (Sykes et a1 1972), we 
have performed longer MC runs, of n = 15000 Ips, for smaller lattices, of size L = 16 
and L = 20. In order to exclude the relaxation to equilibrium (from initial random 
distribution), the averaging was started after 1000 Ips. The MC results for the entropy 
S, the free energy F and the energy EMc are summarised in table 1, together with 
results obtained with the SM method (Meirovitch and Alexandrowicz 1977a) and with 
series expansion techniques. EMc has been calculated with equations (1) and (3) and 
SI-& with equations (6) and (71, using the sets of local states I-IV (defined in § 2.3), 
respectively. Fi, 1 c i c 4, are the corresponding free energy estimates 

Fi = KEMc- Si. (11) 
In the hot region (K < K , )  the series expansion results are based on an approximate 
formula, of relatively high accuracy, for the specific heat (Sykes et a1 1972), and 
therefore will be used here as references for estimating the accuracy of the MC results. 
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For K =0.210 and K =0.213, S4 equals S ~ E R  and F4 equals FsER within the 
statistical errors 0.017% and 0.013%, respectively. These errors therefore measure 
the accuracy of S4 and F4. For K =0.217 the accuracy of S4 and F4 is determined 
by their deviat ion4.07% and 0.04%, respectively, from the corresponding series 
expansion values. In the cold region (K > K,) the series expansion results have been 
obtained from a Pade approximant for the specific heat (Baker 1963). However, they 
seem to become inaccurate close to K,, which can be deduced from the significantly 
lower values obtained for EsER than for both EMC and E S M  (the largest deviation is 
-3% at K = 0.226), and also from the fact that FsER > FsM, which means that FSER 
is less accurate than FSM (since always F S M S F E ~ ~ , ~ ) .  Therefore, in the cold region, 
we shall not determine the accuracy of the MC results by comparing them with the 
series expansion estimates, but in a different way. It should be pointed out that for 
all temperatures Si decreases monotonically with increasing i .  In the cold region, S3 

equals S4 within the statistical error. Therefore, if we assume that a better approxima- 
tion for S would not lower the entropy to a detectable extent (i.e. beyond the statistical 
error), the statistical error can constitute a measure for the accuracy of S4. According 
to this criterion, the accuracy of S4 is better than 0.03%, 0.05% and 0.06% for 
k = 0.235, k = 0.230 and k = 0.226 respectively. A similar consideration can be used 
for estimating the accuracy of Fi (which increases monotonically with i ) ,  and we obtain 
0.02°%~, 0.03% and 0.03% for temperatures 0.235, 0.230 and 0.226, respectively. 
The results for S4 and F4 therefore have comparable accuracy in the hot and the cold 
regions. It should be pointed out that the results for S4 in the cold region are also 
comparable in accuracy to results obtained with the same method in the cold region 
of the square Ising lattice (Meirovitch 1977a), which supports the present estimation 
of the accuracy. It should also be noted that the entropy of relatively small sc lattices 
(L  s 12) with ‘free’ boundary conditions has been calculated by Binder (1972) by 
thermodynamic integration of the MC estimates for the specific heat and the energy. 
From the scale of his graph, it can be deduced that the error is not smaller than 2%, 
which is significantly larger than our error. It should be pointed out that, in general, 
our method is also much more efficient since the entropy is estimated from a single 
MC run; whereas for a thermodynamic integration many MC runs, at different tem- 
peratures, are required. In particular, in the critical region, where the specific heat 
diverges, more and longer runs are necessary. 

It is more difficult to determine the accuracy of the results obtained at K ,  since 
the series expansion values describe the thermodynamic limit, whereas the SM and 
the MC methods simulate relatively small lattices with different boundary conditions. 
It should be noticed however, that, as expected, both SSM and SMc become closer to 
SSER when lattice size is increased from L = 16 to L = 20, and the same tendency 
occurs for E S M ,  EMC and ESER.  For L = 20, S4 deviates from SsER by -1% and F4 
equals FSER, within the statistical error, 0.13%. Obviously one would expect better 
agreement with the series expansion estimates by increasing lattice size and using 
larger (i.e. better approximations) sets of local states. 

It should be pointed out that the statistical error of FsM is about an order of 
magnitude smaller than that of E., 1 s i s 4 .  This stems from the fact that FsM .(but 
not Fi)  is a result of a minimisation procedure which also minimises its fluctuation 
(Meirovitch and Alexandrowicz 1976, see discussion in § 2.2). 

It is of interest to remark that even SI, the crudest approximation, provides 
relatively good estimates for the entropy which are larger than the corresponding 
values of S4 by 0.~%-0.9% for K > K,, and 0.9%-1.3% for K C K,. The results for 
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Sz and S3 are already much closer to those of S4. The results for Ss and S ,  (which 
both are based on set I11 of local states) are always equal, within the statistical error. 
Within this error, we found S, and Fp to be insensitive to relatively large variation 
of the mean field parameter A, and therefore we were able to minimise the fluctuations 
of Fp with respect to A from a single MC run only. 

4. Conclusions 

We have tested several sets of local states for the sc lattice which define by equation 
(6) different approximations for the entropy. For K # K,  we estimate the accuracy 
of our best approximation for the entropy and the free energy to be better than 0.07% 
and 0.04%, and at K ,  approximately 1% and 0.2% respectively. These results are 
significantly more accurate than results obtained with reversible thermodynamic 
integration (Binder 1972). 

For K >K, it is argued that our results for S are more accurate than series 
expansion estimates. We have also tested a new method for estimating the entropy, 
based on equation ( 5 ) ,  which led to the same accuracy as our first method. 

Our accurate methods for estimating the entropy and the free energy can be very 
useful for determining the transition point in MC studies of first-order phase transitions, 
where hysteresis loops occur (Meirovitch 1977b, Landau and Binder 1978). We also 
expect our methods to lead to very accurate estimates for the pressure of three- 
dimensional lattice gas systems (Meirovitch and Alexandrowicz 1977b, Meirovitch 
1983). 
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